Asymptotic integration of functional differential systems with oscillatory decreasing coefficients: a center manifold approach
نویسندگان
چکیده
منابع مشابه
Oscillatory and Asymptotic Behaviour of a Neutral Differential Equation with Oscillating Coefficients
In this paper, we obtain sufficient conditions so that every solution of y(t) − n i=1 p i (t)y(δ i (t)) + m i=1 q i (t)y(σ i (t)) = f (t) oscillates or tends to zero as t → ∞. Here the coefficients p i (t), q i (t) and the forcing term f (t) are allowed to oscillate; such oscillation condition in all coefficients is very rare in the literature. Furthermore, this paper provides an answer to the ...
متن کاملAsymptotic Integration of Delay Differential Systems
The purpose of this paper is to completely prove a conjecture in J. R. Haddock and R. Sacker [l] and further extend a result on asymptotic integration obtained previously by 0. Arino and I. Gyori [24]. Asymptotic integration deals with non-autonomous evolution equations which asymptotically are autonomous, and aims at relating the asymptotic behavior of the solutions of these equations to the a...
متن کاملCenter Manifold Theory for Functional Differential Equations of Mixed Type
We study the behaviour of solutions to nonlinear autonomous functional differential equations of mixed type in the neighbourhood of an equilibrium. We show that all solutions that remain sufficiently close to an equilibrium can be captured on a finite dimensional invariant center manifold, that inherits the smoothness of the nonlinearity. In addition, we provide a Hopf bifurcation theorem for s...
متن کاملOn asymptotic stability of Prabhakar fractional differential systems
In this article, we survey the asymptotic stability analysis of fractional differential systems with the Prabhakar fractional derivatives. We present the stability regions for these types of fractional differential systems. A brief comparison with the stability aspects of fractional differential systems in the sense of Riemann-Liouville fractional derivatives is also given.
متن کاملOn asymptotic stability of Weber fractional differential systems
In this article, we introduce the fractional differential systems in the sense of the Weber fractional derivatives and study the asymptotic stability of these systems. We present the stability regions and then compare the stability regions of fractional differential systems with the Riemann-Liouville and Weber fractional derivatives.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations
سال: 2016
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2016.1.33